Bias in data-driven artificial intelligence systems

An introductory survey

verfasst von
Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosifidis, Wolfgang Nejdl, Maria Esther Vidal, Salvatore Ruggieri, Franco Turini, Symeon Papadopoulos, Emmanouil Krasanakis, Ioannis Kompatsiaris, Katharina Kinder-Kurlanda, Claudia Wagner, Fariba Karimi, Miriam Fernandez, Harith Alani, Bettina Berendt, Tina Kruegel, Christian Heinze, Klaus Broelemann, Gjergji Kasneci, Thanassis Tiropanis, Steffen Staab
Abstract

Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well-grounded in a legal frame. In this survey, we focus on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth. This article is categorized under: Commercial, Legal, and Ethical Issues > Fairness in Data Mining Commercial, Legal, and Ethical Issues > Ethical Considerations Commercial, Legal, and Ethical Issues > Legal Issues.

Organisationseinheit(en)
Forschungszentrum L3S
Institut für Rechtsinformatik (IRI)
Externe Organisation(en)
University of Pisa
Center For Research And Technology - Hellas
GESIS - Leibniz-Institut für Sozialwissenschaften
The Open University
Technische Universität Berlin
KU Leuven
SCHUFA Holding AG
University of Southampton
Universität Stuttgart
Foundation for Research & Technology - Hellas (FORTH)
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
Typ
Übersichtsarbeit
Journal
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
Band
10
ISSN
1942-4787
Publikationsdatum
16.04.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Computerwissenschaft
Elektronische Version(en)
https://doi.org/10.1002/widm.1356 (Zugang: Offen)
https://doi.org/10.48550/arXiv.2001.09762 (Zugang: Offen)